Стоячие волны - солитоны

Если раскачивать один конец веревки с правильно подобран­ной частотой (другой ее конец закреплен), то к закрепленному концу побежит непрерывная волна.

 

Непрерывная волна затем отразится с потерей полуволны. Интерференция падающей и отраженной волн приведет к возникновению стоячей волны, которая выгля­дит неподвижной.

Устойчивость стоячей волны удовлетворяет следующему условию:

где L—длина веревки; п=1, 2, 3 и т.д.; vскорость распро­странения волны, которая зависит от натяжения веревки. Стоячие волны возбуждаются в любых телах, способных со­вершать колебания.

 

Образование стоячих волн является резонансным явлением, которое происходит на резонансных или собственных частотах тела. Точки, где интерференция гасится, называются узлами, а точки, где интерференция усиливается,— пучностями. Помимо поперечных стоячих волн существуют еще и продольные стоячие волны.

 

В системе Вектор две волны можно задать через две синусоиды

Диалоговое окно задания синусоиды

 

Сжимая волны по координате x можно получить более крутые волны

 

Силовые точки на стоячих волнах

 

На сжатых волнах вектора силы

 

 

Моделируем стоячую волну в диалоге с помощью кривых Безье

 

Вектора сил на объединенной из трех участков Безье

 

 

Стоячая волна – анимация

 

 

Стоячая волна в пространстве

Исходный контур (линия из составной участков), линейчатая  поверхность  

 

Поверхность на исходный контур «квадратичная», справа паркет на поверхности  (изображение перспективное)  

 

 

 

Из теория волн

Интерференция волн

Явление интерференции возникает при наложении когерент­ных волн.

Когерентные волны - это волны, имеющие одинаковые частоты, постоянную раз­ность фаз, а колебания происходят в одной плоскости.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же — в про­тивоположных фазах, то наблюдается ослабление колебаний.

Постоянное во времени явление взаимного усиления и ослаб­ления колебаний в разных точках среды в результате наложения когерентных волн называется интерференцией. В результате в пространстве образуется устойчивая картина чередования об­ластей усиленных и ослабленных колебаний.

 

Условиe  максимума

Для двух когерентных волн можно написать пропорцию: .

 

Если колебания вибраторов А и Б совпадают по фазе и име­ют равные амплитуды, то ,

 

где k=0, 1, 2, ...

Тогда

 

 Если разность хода волн равна целому числу волн (т. е. четному числу по­луволн), то в точке наложения этих волн образуется интерференционный максимум.

Условие минимума

Если волны от вибраторов А и Б придут в точку С в противофазе, то они по­гасят друг друга: А=0. Тогда . Следовательно,  

 

Если разность хода волн равна нечетному числу полуволн, то в точке наложения этих волн образуется интерференционный минимум.

  

Если разность хода не определяется данными соотношениями, то наблюдается промежуточный результат: 0<2х.

Распределение энергии при интерференции.

Наличие минимума в точке С означает: энергия W сюда не поступает.

Наличие максимума в точке С означает: происходит увеличе­ние за счет перераспределения энергии в пространстве. Так как энергия пропорциональна квадрату амплитуды, то при увели­чении амплитуды в 2 раза энергия увеличивается в 4 раза. Это означает, что в точку С поступает энергия в 4 раза боль­ше энергии одного вибратора при условии: энергии вибраторов равны.

Интерференция присуща волнам любой природы (механиче­ским, электромагнитным).

 

Вопрос освещения интерференции особенно связан со светом

 

При наложении двух колебаний происходит пространственное перераспределение энергии колебаний, в результате чего в одних точках возникают максимумы, а в других минимумы колебаний. Это явление и называют интерференцией света.

Широкое применение явление интерференции нашло в очень точных измерительных приборах получивших название интерферометров. Применяя интерферометр, Майкельсон в 1892 году произвел сравнение международного эталона метра с длиной стандартной световой волны. Данный метод позволил значительно увеличить точность измерения эталона.

 

 

 

И все же нас больше интересуют стоячие одиночные волны – солитоны (от англ. solitary wave - уединенная волна), возникающие в океане. С такими волнами  сейчас встречается ФК, пересекающий океан  на весельной лодке. И не известно, что будет, если ФК встретиться с такой волной, что ниже на рисунке

 

 

Для дальнейшего исследования солитонов воспользуемся материалом

Е. Н. Пелиновский Солитоны в воде http://www.roman.by/r-77079.html

Главная особенность солитонов заключается в неизменности их формы в процессе распространения, и, следовательно, такие волны могут распространяться на очень большие расстояния без потери своей энергии. Роль представлений о солитонах резко возросла, когда стало ясно, что если начальное возмущение имеет другую форму, то оно сбрасывает все лишнее в хвост и трансформируется в солитоны, число которых определяется законами сохранения (массы, энергии). Кроме того, солитоны сохраняют свою форму при взаимодействии с себе подобными.

Солитоны в воде

Рис.1. Уединенная волна - солитон

Выше мы рассказали о солитонах на воде. Но в океане волны бегают не только на его поверхности. Океан не является однородным по вертикали, его температура и соленость зависят от глубины, а значит, и плотность морской воды не остается постоянной. Отсюда следует, что океан можно представить как совокупность многих поверхностей, разделяющих слои с разными плотностями. Каждая такая поверхность в принципе похожа на водную поверхность, где также происходит скачок плотности (от воды к воздуху), и, следовательно, по этим поверхностям могут также распространяться волны, получившие название внутренних. Поскольку скачок плотности внутри океана мал (по сравнению с морской поверхностью), то мала и архимедова сила, двигающая частицы воды в волне. В результате амплитуды волн могут достигать очень больших значений, отмечались волны в 100 м.

волна описывается всего двумя параметрами: амплитудой (или скоростью) и координатой (местоположением), так что солитон, по существу, очень похож на классическую движущуюся частицу. Уравнение для такой частицы хорошо известно еще со средней школы и представляет собой второй закон Ньютона: ускорение частицы, умноженное на ее массу, равно внешней силе, действующей на частицу. В таких задачах, как известно, очень удобно описывать внешние воздействия в рамках потенциальных полей, и наглядным примером здесь служит движение шарика по криволинейной поверхности (рис.2): частица колеблется в потенциальной яме.

Солитоны в воде

Рис.2. Колебания частицы в потенциальной яме

Остается понять, что происходит в нашем случае. Движущийся корабль выдавливает из-под себя воду - так образуется потенциальная яма, в которую "сваливается" солитон. Если солитон имеет ту же скорость, что и корабль, и находится непосредственно в яме, то он является стационарным и представляет собой нелинейную корабельную волну. Но это возможно только для солитона одной-единственной амплитуды. Если скорость солитона больше скорости корабля, то возможны два режима. При очень большой разнице в скоростях солитон обгонит корабль, практически не испытав взаимодействия. Когда же скорости близки, солитон сначала ускоряется, сваливаясь в яму, а затем опять тормозится, пытаясь выбраться из нее.

Теперь понятно, почему солитон, который движется почти синхронно с кораблем (резонансный солитон), колеблется около него. Если же солитон имеет малую амплитуду и находится впереди корабля, то он может усилиться, пока его догоняет корабль, а потом затухнуть, когда корабль его обгонит. В результате возможно появление солитонов, живущих короткое время. Существование такого нестационарного волнового следа, меняющего сопротивление движению корабля, требует дополнительной его мощности, и переменная нагрузка на двигатель возрастает. Трудности управления кораблем в условиях резонансного возбуждения известны. Развитая теория дает одно из возможных объяснений этого эффекта.

Мы всюду говорили о корабельных волнах, используя для простоты изложения их наглядность. В результате наша задача стала казаться уж очень технической. В океанологии роль движущегося корабля играют перемещающиеся области давления, в частности, при штормах и ураганах. Такие крупномасштабные атмосферные воздействия приводят к возникновению больших волн в океане. На метеорологических картах, которые показывают по телевидению, можно увидеть области как высокого, так и низкого давления. Увеличение давления вызывает понижение уровня океана, а его уменьшение ведет к повышению уровня (эта связь получила название закона обратного барометра).

Первый случай похож на движущийся корабль и может приводить к захвату солитона в поле давления. Уменьшение давления над водой, сопровождающееся повышением уровня океана, приводит к новым эффектам. Так, если солитон, имея скорость, близкую к скорости перемещающего давления, пытается догнать эту область, то ему не хватает энергии, чтобы влезть на потенциальную горку, и, потеряв энергию (а следовательно, и скорость), солитон будет отставать от области возмущения. В системе координат, связанной с внешним возмущением, солитон отражается от него. Формально и здесь, конечно, существует стационарное решение, когда солитон сидит на вершине горы и распространяется вместе с ней, однако ясно, что такое решение является неустойчивым, и при малейшем смещении солитон скатится с вершины горы.

Другим важным приложением развитой теории служат волны в потоках воды над неровным дном (например, над подводной банкой). Очевидно, что в системе координат, связанной с потоком, такая банка движется и играет роль корабля, так что здесь возможны все те эффекты, которые описаны выше. Однако смысл таких решений здесь существенно другой: солитоны стоят в потоке над изолированной неровностью дна и не смещаются относительно нее. Такие стоячие структуры в потоках, наблюдаемые в океанических течениях типа Куросио, относительно легко измерять в силу их долгоживучести. Отметим также атмосферный аспект проблемы: стоячая структура в воздушном потоке над городом блокирует процессы обмена и способствует образованию смога. Эти процессы сейчас активно изучаются.

Получив объяснение эффекта в простой ситуации, захотелось, как это обычно бывает, немедленно рассмотреть более общие случаи, чтобы оценить реальность развитой теории. В частности, предположение о постоянстве скорости движения внешнего возмущения представляется слишком сильным для океанологии. И мы рассмотрели ряд других возможных движений. Здесь мне бы хотелось остановиться на равноускоренном движении. Первый вопрос: существует ли резонансно движущийся солитон - решается тривиально. Такой солитон, конечно же, имеется, но его скорость должна следовать за скоростью внешнего возмущения, значит, амплитуда солитона неограниченно нарастает. Вопрос об устойчивости такого солитона оказался еще более простым, чем в случае равномерного движения. Так, ускорение ведет к наклону потенциальной поверхности, поэтому если на ней была ямка, то она и останется, при условии, конечно, что перекос невелик. Если же была горка, то из-за наклона на поверхности также образуется ямка (рис.3). В результате солитон может захватываться внешним возмущением любого знака, и это явление должно быть широко распространено.

Солитоны в воде

Рис.3. Колебания солитона в равноускоренно движущемся внешнем поле

Конечно, для простоты изложения мы очень загрубили модель: на самом деле солитон при взаимодействии не остается неизменным, часть его энергии излучается, теряется также масса солитона (эти эффекты, естественно, учтены в нашей теории). Число определяющих параметров на самом деле велико (как минимум два - для возмущения и два - для солитона), так что возможны более разнообразные, чем описанные здесь, режимы взаимодействия солитона с внешним возмущением. Учитывая приближенность теории, мы специально провели численное моделирование такого воздействия в рамках более полных уравнений, подтвердившее правомочность первоначальных оценок. На рис.4 показан результат расчета захвата солитона ускоренно движущейся силой.

Солитоны в воде

Рис.4. Захват и усиление солитона ускоренно движущейся внешней силой. Амплитуда солитона и его местоположение относительно центра внешней силы (в безразмерых переменных)

* * *

Выше мы описали простейшие режимы взаимодействия солитона с внешним возмущением. Подход, при котором нелинейная волна рассматривается как частица, оказался весьма перспективным. Мы поняли, когда солитон может быть захвачен внешним полем, а когда отторгнут им. Сразу стало ясно, куда надо двигаться дальше в решении этой проблемы. Например, внешнее возмущение может захватить несколько солитонов. Такие примеры мы уже получали в численных экспериментах. Ответа на вопрос, сколько таких солитонов может быть захвачено одновременно, пока еще нет.

Хочется также более внимательно рассмотреть геофизические аспекты этой проблемы, связанные с существованием стоячих структур в течениях (данные наблюдений за биопродуктивностью океана выявляют корреляцию между интенсивностью этого процесса и местоположением таких структур) и в атмосферных потоках над городами (в связи с проблемой смога). Большинство таких процессов принципиально связано с внутренними волнами, скорость которых мала (1 м/с), и им легко затормозиться на препятствиях. К сожалению, поле внутренних волн оказалось весьма чувствительным к деталям стратификации плотности океана.

Другой важный аспект - анализ солитонов с точки зрения морских природных катастроф (цунами, ураганы), поскольку они могут распространяться на большие расстояния. Но здесь пока еще многое остается только на уровне оценок.

Список литературы

1. Pelinovsky E., Choi H. A mathematical model for nonlinear waves due to moving disturbances in a basin of variable depth //J. Korean Soc. Coastal and Ocean Engn. 1993. V. 5. P. 191-197.

2. Пелиновский Е. Н., Талипова Т. Г., Степанянц Ю. А. Моделирование распространения нелинейной внутренней волны в горизонтально неоднородном океане //Изв. РАН. Физика атмосферы и океана. 1994. Т. 30. С. 79-85.

3. Grimshaw R., pelinovsky E., Tian X. Interaction of a solitary wave with an external force //Physica D. 1994. V. 77. P. 405-413.

4. Гримшоу Р., Пелиновский Е. Н. Взаимодействие уединенных поверхностных и внутренних волн с бегущими возмущениями //ДАН. 1995. Т. 344. С. 394-396.

5. Долина И. С. Резонансные эффекты при рассеянии поверхностной гравитационной волны на подводном препятствии //Препринт ИПФ. 1995. № 374.

6. pelinovsky E., Talipova T., Ivanov V. Estimations of the nonlinear properties of the internal wave field off the Israel coast //Nonlinear Processes in Geophysics. 1995. V. 2. P. 80-88.

7. pelinovsky E., Holloway P., Talipova T. A Statistical analysis of extreme events in current variations due to internal waves from the Australian North West shelf //J. Geophys. Res. 1995. V. 100. P. 831-839.

8. Grimshaw R., pelinovsky E., Sakov P. Interaction of a solitary wave with an external force moving with variable speed //Studied Appl. Math. 1996. V. 97.

9. pelinovsky E., Talipova T. Nonlinear model of internal wave propagation //Int. Conf. "Dynamics of ocean and atmosphere". Moscow, 1995. P. 90-91.

10. Talipova T., pelinovsky E., Kit E. Numerical simulation of wind waves in the coastal zone //Int. Conf. "Coastal Dynamics'95". Gdansk (Poland), 1995. P. 211-212

 

 

 

«Девятый вал» (http://www.nkj.ru/archive/articles/7337/)

Обычная линейная волна имеет форму правильной синусоиды (а). Нелинейная волна Кортевега - де Фриза выглядит как последовательность далеко разнесенных горбиков, разделенных слабо выраженной впадиной (б). При очень большой длине волны от нее остается только один горб - 'уединенная' волна, или солитон (в).
Так ведет себя нелинейная волна на поверхности воды при отсутствии дисперсии. Ее скорость не зависит от длины волны, но увеличивается с ростом амплитуды. Гребень волны движется быстрее, чем подошва, фронт становится все круче, и волна опрокидывается. Но уединенный горб на воде можно представить в виде суммы составляющих с разной длиной волны. Если среда обладает дисперсией, длинные волны в ней побегут быстрее коротких, выравнивая крутизну фронта. В определенных условиях дисперсия полностью компенсирует влияние нелинейности, и волна будет долго сохранять свою первоначальную форму - образуется солитон.
Так выглядит групповой солитон. Это не 'уединенная' волна, а группа из 14-20 волн (цуг, или волновой пакет) с одной длиной волны, но с различной амплитудой, которая распространяется как одно целое, сохраняя форму огибающей. Самая высокая волна находится посередине группы; это и есть знаменитый 'девятый вал'.


 

Картина И. К. Айвазовского 'Девятый вал'. Волны на воде распространяются подобно групповым солитонам, в середине которых, в интервале от седьмой до десятой, идет самая высокая волна.