Построить фон на основе текста или рисунка и
расшифровать его – мост ЭПР или «банка с супом»

 

Задан текст –  на русском языке.
В черной дыре в закрученной воронке он будет выглядеть воронкой струн разного  цвета.

 

Примеррасшифровки квантовой запутанности.jpg

 

С помощью цепочки преобразования (МК 6.4) текст (без фона) можно на 5-й картинке преобразовать в новый шрифт (например, планеты Глория)

Рис2.jpg

Командой:  Поверхность -> Обобщенная труба, задав перед этим образующую - окружность диаметром 0.01 и указав ее в качестве образующей, а направляющей группу с текста и команду ОК, получим  расшифрованный текст с планеты Глория.

Рис3.jpg

Задан только текст без рисунка

 

            А нельзя ли сразу фон расшифровать? Из текста командой: Преобразования -> Случайные -> Случайное преобразование точек, задав параметры: Радиус разброса, в опции Дуга указать точку, центр (курсором) и ОК! В результате получите картинку фона.

Меню Случ.jpg

 

С помощью МК 6.4 из фона можно сделать 4 дополнительных преобразования  

Рис1.jpg

В принципе можно сделать с заданием исходного текста и в конце получения кодированного текста и декодированного. Для нас задача более актуальная: получать замысловатый фон, который получаем в 5 вариантах, причем не только из текста, но и из любого рисунка с помощью команды  Поверхность -> Обобщенная труба, задав перед этим образующую - окружность диаметром 0.01 и указав ее в качестве образующей, а направляющей группу с текста и команду ОК, получим  расшифрованный первоначальный рисунок.

 

Палатка 4.jpg

Палатка 5.jpg

Чудеса: из абстракции (может быть сохранен в *.dxf)
автоматически получить расшифрованный рисунок

 

Упражнение 1. Смоделировать движение лодки ФК между щупальцами огромного кальмара, которые плавают в Южном океане при  движение ФК вокруг света.

 

Ocьминог2.gif

 

Упражнение 2. Задать кальмара в векторном формате (например, электронным карандашом в Corelraw), по его рисунку в векторном dxf-формате  задать фон и преобразования (для рисунка и фона), как было сделано выше.

 

1)      Рисунок (рисуем в CorelDraw) и 2) по нему фон (команда Преобразования случайные)

 

Фон осьминога.jpg

Задан рисунок и по нему его фон и обратно фон->рисунок

 

 

осьминог 2 ряда.jpg

По рисунку вибрационный ряд преобразований (МК 6.4)

 

Дешифровка  осьминога.jpg

Дешифровка из абстрактного вида в первоначальный рисунок

(из формы содержание)

 

Преобразования dxf- рисунка (первый ряд) и рисунка-фона с помощью МК 6.4

Дальше выбираем нужные  рисунки (они все есть в структуре) и создам нужную композицию, например фон -> рисунок

 

осьминог Гот1.jpg

Фон и осьминог в dxf-формате

Фон (этикетка) можно рашифровать – это будет осьминог (суп)

 

Осьминог_000.gif

Здесь осьминога в bmp- формате с фоном
при дешифровке – будет осьминог в графическом виде

 

 

            Резюме. Мост ЭПР – квантовый переход через черную дыру (червоточину) с сохранением  информации.  Есть несколько теорий при которой информация в этом случае сохранятся. И связывают это с квантовой запутанностью, а лучше  читайте умные мысли об этом сами:

 

ПОДБОРКА ИЗ ИНТЕРНЕТА (выделено мной б):

        Теория Энштейна Роузена Подольского

            В 1935 году Эйнштейн вместе с Борисом Подольским и Натаном Розеном написал статью «Можно ли считать квантово-механическое описание физической реальности полным?», в которой описал мысленный эксперимент, который впоследствии был назван парадоксом Эйнштейна — Подольского —Розена.

Без названия.jpg

            Запутанность не является жутким дальнодействующим соединением, о котором думал Эйнштейн — а вполне реальным мостом, связывающим удаленные точки в пространстве. Физик-теоретик Марк Ван Раамсдонк подозревает, что запутанность и пространство-время на самом деле связаны между собой. В 2009 году он рассчитал, что пространство без запутанности не смогло бы удержать себя. Он написал работу, из которой вытекало, что квантовая запутанность является иглой, которая сшивает воедино гобелен космического пространства-времени.

            «Выходя из глубоких основ физики, все указывает на то, что пространство должно быть связано с запутанностью», — говорит Джон Прескилл, физик-теоретик из Калтеха. Ззапутанные частицы соединяются червоточинами — туннелями пространства-времени, представленными еще Эйнштейном.  Запутанность не является жутким дальнодействующим соединением, о котором думал Эйнштейн — а вполне реальным мостом, связывающим удаленные точки в пространстве.  При этом не является ли сама Вселенная квантовым компьютером, который тихо программирует пространство-время в сложной сети запутанностей. «Все прогрессирует невероятным образом», — говорит Ван Раамсдонк из Университета Британской Колумбии в Ванкувере. Физики возлагают большие надежды на то, куда их заведет это соединение пространства-времени с запутанностью. ОТО блестяще описывает, как работает пространство-время; новые исследования могут приоткрыть завесу над тем, откуда берется пространство-время и на что оно похоже на мельчайших масштабах, лежащих во власти квантовой механики. Запутанность может быть секретным ингредиентом, который объединит эти пока что несовместимые области в теорию квантовой гравитации, позволив ученым понять условия внутри черной дыры и состояние Вселенной в первые моменты после Большого Взрыва.

 

Граница, ограничивающая объем пространства, может содержать всю информацию, в нем заключенную

            Если применить голографический принцип к повседневной жизни, то любопытный сотрудник может идеально реконструировать все, что находится в офисе, — кипы бумаг, семейные фотографии, игрушки в углу и даже файлы на жестком диске компьютера — просто глядя на внешние стены квадратного офиса. Эта идея противоречива, учитывая то, что стены имеют два измерения, а интерьер офиса три. Но в 1997 году Хуан Малдасена, струнный теоретик тогда из Гарварда, привел интригующий пример того, что голографический принцип мог бы раскрыть о Вселенной.

            Он начал с анти-де-ситтеровского пространства, которое напоминает пространство-время, в котором преобладает гравитации, но обладает рядом странных атрибутов. Оно изогнуто таким образом, что вспышка света, излученного в определенном месте, в конечном счете вернется оттуда, где появилась. И хотя Вселенная расширяется, анти-де-ситтеровское пространство не растягивается и не сжимается. Из-за таких особенностей кусок анти-де-ситтеровского пространства с четырьмя измерениями (тремя пространственными и одним временным) может быть окружен трехмерной границей.

            Малдасена обращался к цилиндру анти-де-ситтеровского пространства-времени. Каждый горизонтальный срез цилиндра представляет состояние его пространства в данный момент, тогда как вертикальное измерение цилиндра представляет время. Малдасена окружил свой цилиндр границей для голограммы; если бы анти-де-ситтеровское пространство было банкой супа, то граница была бы этикеткой.

            На первый взгляд кажется, что эта граница (этикетка) не имеет ничего общего с наполнением цилиндра. Пограничная «этикетка», к примеру, соблюдает правила квантовой механики, а не гравитации. И все же гравитация описывает пространство внутри содержимого «супа». Малдасена показал, что этикетка и суп были одним и тем же; квантовые взаимодействия на границе отлично описывают  анти-де-ситтеровское пространство, которое закрывает эта граница. «Две этих теории кажутся совершенно разными, но точно описывают одно и то же», — говорит Прескилл.

            Малдасена добавил запутанность в голографическое уравнение в 2001 году. Он представил пространство в двух банках с супом, каждая из которых содержит черную дыру. Затем создал эквивалент самодельного телефона из стаканчиков, соединяющего черные дыры с помощью червоточины — туннеля через пространство-время, впервые предложенного Эйнштейном и Натаном Розеном в 1935 году. Малдасена искал способ создать эквивалент такой связи пространства-времени на этикетках банок. Хитрость, как он понял, была в запутанности.

            Как и червоточина, квантовая запутанность связывает объекты, которые не имеют очевидных отношений. Квантовый мир — расплывчатое место: электрон может вращаться в обе стороны одновременно, будучи в состоянии суперпозиции, пока измерения не предоставят точный ответ. Но если два электрона запутаны, измерение спина одного позволяет экспериментатору узнать спин другого электрона — даже если партнерский электрон находится в состоянии суперпозиции. Эта квантовая связь остается даже если электроны будут разделять метры, километры или световые годы.

            Малдасена показал, что с помощью запутывания частиц на одной этикетке с частицами на другой можно идеально квантово-механически описать соединение червоточиной банок. В контексте голографического принципа, запутанность эквивалентна физическому связыванию кусков пространства-времени вместе.

            Поэтому Ван Раамсдонк нарисовал воображаемую биссектрису на голографической этикетке и затем математически разорвал квантовую запутанность между частицами на одной половине этикетке и частицами на другой. Он обнаружил, что соответствующий диск анти-де-ситтеровского пространства начал делиться пополам. Будто бы запутанные частицы были крючками, которые удерживают полотно пространства и времени на месте; без них пространство-времени разлетается на части. По мере того, как Ван Раамсдонк понижал степень запутанности, часть подключенного к разделенным регионам пространства становилась тоньше, подобно резиновой нити, тянущейся от жвачки. «Это навело меня на мысль, что присутствие пространства начинается с присутствия запутанности» написали работу, бросающую вызов общепринятым убеждениям о горизонте событий, точки невозврата черной дыры.

 

        Истина, скрытая файрволом (горизонтом событий - защитным механизмом б)

            Физик Стивен Хокинг показал, что пары запутанных частиц  могут распадаться на горизонте событий. Одна падает в черную дыру, а другая убегает вместе с так называемым излучением Хокинга. Этот процесс постепенно подтачивает массу черной дыры, в конечном итоге приводя к ее гибели. Но если черные дыры исчезают, вместе с ней должна исчезать и запись всего, что падало внутрь. Квантовая теория же утверждает, что информация не может быть уничтожена. Материя и энергия падает в черную дыру. Но с точки зрения внешнего наблюдателя, этот материал никогда не преодолевает горизонт событий; он словно балансирует на его грани. В результате горизонт событий становится голографической границей, содержащей всю информацию о пространстве внутри черной дыры. В конце концов, когда черная дыра испаряется, эта информация утекает в виде излучения Хокинга. В принципе, наблюдатель может собрать это излучение и восстановить всю информацию о недрах черной дыры. Каждая хокингова частица должна быть запутана со своим оригинальным партнером, который упал в черную дыру

            Квантовая теория утверждает, что для того, чтобы запутанность присутствовала между всеми частицами снаружи черной дыры, должна быть исключена запутанность этих частиц с частицами внутри черной дыры. Кроме того, физики обнаружили, что разрыв одной из запутанностей породил бы непроницаемую энергетическую стену, так называемый файрвол, на горизонте событий. Информация не исчезает внутри черной дыры

            Сасскинд потратил годы, пытаясь доказать, что информация не исчезает внутри черной дыры; идея файрвола ошибочна. Однажды он получил загадочное письмо от Малдасены: В нем было немного ЭР = ЭПР. Могут ли червоточины разрешить мешанину запутанности, порожденную проблемой файрвола. Сасскинд быстро подхватил эту идею.

            Малдасена и Сасскинд заявили, что червоточина — технически мост Эйнштейна-Розена, или ЭР — является пространственно-временным эквивалентом квантовой запутанности.  Под ЭПР понимают эксперимент Эйнштейна-Подольского-Розена, который должен был развеять мифологическую квантовую запутанность. Это означает, что каждая частица излучения Хокинга, независимо от того, как далеко она находится от начала, напрямую связана с недрами черной дыры посредством короткого пути через пространство-время. «Если двигать через червоточину, далекие вещи оказываются не такими уж и далекими», — говорит Сасскинд. Сасскинд и Малдасена предложили собрать все частицы Хокинга и столкнуть их вместе, пока они не коллапсируют в черную дыру. Эта черная дыра была бы запутана, а значит соединена червоточиной с оригинальной черной дырой. Этот трюк превратил запутанную мешанину хокинговых частиц — парадоксально запутанных с черной дырой и между собой — в две черные дыры, соединенные червоточиной. Перегрузка запутанности разрешилась, и проблема файрвола была исчерпана.

            Не все ученые прыгнули на подножку трамвая ЭР = ЭПР. Сасскинд и Малдасена признают, что им предстоит проделать еще много работы, чтобы доказать эквивалентность червоточин и запутанности. Но после обдумывания последствий парадокса файрвола, многие физики соглашаются, что пространство-время внутри черной дыры обязано своим существованием запутанности с излучением снаружи. Это важное прозрение, отмечает Прескилл, поскольку оно также означает, что вся ткань пространства-времени Вселенной, включая тот клочок, который занимаем мы, является продуктом квантового жуткого действия.

            Одно дело сказать, что вселенная конструирует пространство-время посредством запутанности; совсем другое — показать, как вселенная это делает. Этой сложной задачей занялись Прескилл и коллеги, которые решили рассмотреть космос как колоссальный квантовый компьютер. Почти двадцать лет ученые работали над строительством квантовых компьютеров, которые используют информацию, зашифрованную в запутанных элементах, вроде фотонов или крошечных микросхем, чтобы решать проблемы, с которыми традиционные компьютеры справиться не могут. Команда Прескилла использует знание, полученное в результате этих попыток, чтобы предсказать, как отдельные детали внутри банки с супом могли бы отразиться на заполненной запутанностью этикетке.

            Ученые разделяют данные между несколькими запутанными частицами. Книга, написанная на языке квантовой коррекции ошибок, будет полна бреда, говорит Прескилл, но все ее содержимое можно будет восстановить, даже если половина страниц пропадет без вести.

            Квантовая коррекция ошибок привлекла много внимания в последние годы, но теперь Прескилл и его коллеги подозревают, что природа придумала эту систему уже давно. Прескилл и его команда показали, как запутывание множества частиц на голографической границе идеально описывает одну частицу, притягиваемую гравитацией внутри куска анти-де-ситтеровского пространства. Эта находка может привести к лучшему пониманию того, как голограмма кодирует все детали пространства-времени, которое окружает.

            У Вселенной нет такой четкой этикетки на банке с супом. Ткань пространства-времени космоса расширяется с момента Большого Взрыва и продолжает делать это в нарастающем темпе. Если вы отправите луч света в космос, он не развернется и не вернется; он будет лететь. «Непонятно, как определить голографическую теорию нашей Вселенной, — писал Малдасена в 2005 году. — Просто нет удобного места для размещения голограммы».

            Тем не менее, как бы странно ни звучали все эти голограммы, банки с супом и червоточины, могут стать перспективными дорожками, которые приведут к слиянию квантовых жутких действий с геометрией пространства-времени. Сегодня эта связь может объединить квантовую механику ОТО в теорию квантовой гравитации. Вооружившись такой теорией, физики могли бы разобрать загадки состояния юной Вселенной, когда материя и энергия умещались в бесконечно малой точке пространства.

         Предложена новая теория, согласно которой черные дыры это кротовые норы

            Описать четырехмерные кротовые норы в космосе, которые можно было бы пройти, не так сложно. Стоит лишь подобрать необходимый вид метрики.

            И таких разнообразных теорий давным-давно много:

            Черные дыры Шварцшильда

            "Мосты" Эйнштейна-Розена

            Решения уравнений ОТО  Людвига Фламма

            Черная дыра Райснера-Нордстрема

            Работы Сергея Сушкова и Аркадия Попова совместно с испанским исследователем Давидом Хохбергом, а также Сергея Красникова

            А черные дыры — по сути, червоточины, служащие коридорами в другие Вселенные.

 

·         Модель де Ситтера, мир де Ситтера, вселенная де Ситтера — так принято называть класс космологических моделей, решения уравнений ОТО с космологической постоянной, которые описывают вакуумное состояние. Свойства последнего зависят от знака этой постоянной и сильно отличают его от «пустого вакуума». Модели с отрицательной космологической постоянной принято называть анти-де-ситтеровскими.

·         В де-ситтеровских моделях динамика вселенной определяется космологической постоянной, вкладом холодного вещества и излучения пренебрегают.

·         Впервые модель такого типа была введена Виллемом де Ситтером. Считается, что реальная Вселенная описывалась моделью де Ситтера на очень ранних стадиях расширения (см. Инфляционная модель Вселенной). В настоящее время, возможно, вновь происходит переход к де-ситтеровскому режиму расширения.

·